WE ARE HIRING

Fiber Optic Fusion Splicers and How They Work

blogFiber Optic Fusion Splicers and How They Work

Fiber Optic Fusion Splicers and How They Work

What is fusion splicing?

Fusion splicing is the act of joining two optical fibers end-to-end. The goal is to fuse the two fibers together in such a way that light passing through the fibers is not scattered or reflected back by the splice, and so that the splice and the region surrounding it are almost as strong as the intact fiber. The source of heat is usually an electric arc, but can also be a laser, or a gas flame, or a tungsten filament through which current is passed.

Here we have a photo of Rick and the techs posing for a selfie while Ryan splices some fiber optic cable for a Hilton Hotel located in Chico

How does a fusion splicer work?

Before optical fibers can be successfully fusion-spliced, they need to be carefully stripped of their outer jackets and polymer coating, thoroughly cleaned, and then precisely cleaved to form smooth, perpendicular end faces. Once all of this has been completed, each fiber is placed into a holder in the splicer’s enclosure. From this point on, the fiber optic fusion splicer takes over the rest of the process, which involves 3 steps:

  • Alignment: Using small, precise motors, the fusion splicer makes minute adjustments to the fibers’ positions until they’re properly aligned, so the finished splice will be as seamless and attenuation-free as possible. During the alignment process, the fiber optic technician is able to view the fiber alignment, thanks to magnification by optical power meter, video camera, or viewing scope.
  • Impurity Burn-Off: Since the slightest trace of dust or other impurities can wreak havoc on a splice’s ability to transmit optical signals, you can never be too clean when it comes to fusion splicing. Even though fibers are hand-cleaned before being inserted into the splicing device, many fusion splicers incorporate an extra precautionary cleaning step into the process: prior to fusing, they generate a small spark between the fiber ends to burn off any remaining dust or moisture.
  • Fusion: After fibers have been properly positioned and any remaining moisture and dust have been burned off, it’s time to fuse the fibers ends together to form a permanent splice. The splicer emits a second, larger spark that melts the optical fiber end faces without causing the fibers’ cladding and molten glass core to run together (keeping the cladding and core separate is vital for a good splice – it minimizes optical loss). The melted fiber tips are then joined together, forming the final fusion splice. Estimated splice-loss tests are then performed, with most fiber fusion splices showing a typical optical loss of 0.1 dB or less. You can learn more about fusion splicing and splicers here–> https://www.cableorganizer.com/learning-center/articles/fiber-optic-fusion-splicers.htm
(Source: https://en.wikipedia.org/wiki/Fusion_splicing#:~:text=Fusion%20splicing%20is%20the%20act,strong%20as%20the%20intact%20fiber.)

User rating:

Share it

About the author: Workman Communications

Real People... Real Solutions... Real Quality

For the past 10 years we have treated every customer like they were a part of our family. Other companies may offer similar services, but our services are the best, and come with a personal touch. We make sure each and every install is completed to your standards and with precision quality.

Service Areas

Sacramento Area
Elk grove
Lincoln
Auburn
Davis
Roseville
Folsom
El Dorado Hills
Galt
Northern & Southern California

Contact Us

Phone
(916) 880-6040

Email
info@workmancomm.com

Hours
Monday - Friday
8:00 am - 3:00 pm

facebook_icon twitter_icon instagram_icon